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In this Brief Report we discuss the effectiveness of the Kozachenko-Leonenko entropy estimator when
generalized to cope with entropic forms customarily applied to study systems evincing asymptotic scale
invariance and dependence �either of linear or nonlinear kind�. We show that when the variables are indepen-
dently and identically distributed the estimator is only valuable along the whole domain if the data follow the
uniform distribution, whereas for other distributions the estimator is only effectual in the limit of the
Boltzmann-Gibbs-Shanon entropic form. We also analyze the influence of the dependence �linear and nonlin-
ear� between variables on the accuracy of the estimator between variables. As expected in the last case the
estimator loses efficiency for the Boltzmann-Gibbs-Shanon entropic form as well.
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I. INTRODUCTION

After a period of debate, the connection between the mi-
croscopic world and the displayed macroscopic properties of
the system by means of the Boltzmann principle, which was
later extended by Gibbs to systems in contact with a reser-
voir, has achieved an incontestable consensus �1�. Despite its
broad acceptance, it is neglected by many people that the
standard statistical mechanics is still based on a hypothesis,
the Stosszahl Ansatz �2�. This ansatz is intimately related to
the ergodic theory which has only been analytically proven
for a set of very few simple systems �3�. With the surging
interest in more intricate systems for which the ergodic
theory is bound to be invalid, e.g., systems that occupy their
allowed phase space in a scale-invariant way or exhibit long
spatiotemporal correlations �4�, entropic forms different to
the Boltzmann-Gibbs �BG� functional have been presented.
Among several, two of them might be given special empha-
sis: the Renyi entropy �5� and the nonadditive entropy pro-
posed in a physical context by Tsallis �6�. For the last two
decades there has been an impressive amount of work toward
the physical validation and application of the latter �8�. As
occurs in the BG standard case �9–11�, many systems studied
within the nonadditive formalism present a reduced number
of observations or correspond to finite-size systems �12,13�.
Consequently, a considerable error can be introduced if the
simplest method based on binning the data is assumed and
the number of observables is very small.

In this Brief Report we generalize a well-known binless
strategy for the estimation of BG entropy, the Kozachenko-
Leonenko algorithm �KLA� �14�, which bases the estimation
of the theoretical entropy on the distance � /2 to the nearest
neighbor of a specific order n. We illustrate its possible va-
lidity by comparing numerical results with the theoretical
values in two different situations: independent and dependent
variables. In the former, we survey three standard distribu-
tions �PDF�, namely, the Gaussian, the Student-t �or
q-Gaussian�, and the uniform PDF. In the latter case, we
analyze linear and nonlinear dependent Student-t variables.

For the sake of simplicity, we will restrict our analysis to
one-dimensional systems corresponding to sets of random
variables.

II. GENERALIZING KLA

The nonadditive entropy is defined as �6�

SQ �
1 −� �p�x��Qdx

Q − 1
�Q � R� , �1�

which in the limit Q going to 1 concurs with the Boltzmann-
Gibbs entropy, S1=SBG�−�p�x�ln p�x�dx=−�ln p�x�	, where
�¯ 	 represents the average. Bearing in mind the
Q-logarithm definition �8�, limQ→1
lnQ x��x1−Q−1� / �1
−Q��=ln x, it is easily verifiable that the entropic functional
can be written in the following way:

SQ
� = −� p�x�lnq p�x�dx = − �lnq p�x�	 , �2�

with Q=2−q. In other words, the entropy SQ represents the
average value of an alternative way of describing the sur-
prise. From this definition, we are evoked to apply the same
ideas of the binless KLA.

Let us consider a set of N random variables, 
xi�, identi-
cally distributed and associated with a generic PDF, p�x�,
whose entropy estimation works out at

SQ = −
1

N
�

i

lnq P�xi� � − �lnq Pi	 , �3�

where P�x��p�x� �here � represents a segment of the x
domain which preferentially tends to 0�. Equation �3� should
be equal to SQ

� in the limit of N going to infinity and �→0.
Alternatively, the measure P�xi� relates to the distance �
�centered at xi� which comprises a given number of nearest
neighbors, n �originally n=1�, or accordingly to the probabil-
ity �n��� that the �n−1� nearest neighbors have values x�
within x�� /2 and the nth nearest neighbor is at a distance
� /2 of xi, i.e.,*silvio.queiros@unilever.com; sdqueiro@gmail.com
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�n��� =
�N − 1�!

�n − 1� ! �N − n − 1�!
�Pi�����n−1

�1 − Pi�����1+n−N

dPi����
d�

,

�4�

where Pi����=�x−�/2
x+�/2pi��z�dz. Thence, we associate �lnq Pi	

with lnq Pi�=��n���lnq Pi����d� that yields �15�

lnq Pi� =

1 −
��N���n + 1 − q�
��n���1 + N − q�

q − 1
. �5�

Taking into consideration that lnq�u�v�
=lnq u+lnq v+ �1−q�lnq u� lnq v and remembering that
Pi���� pi�� we obtain the final formula,

SQ =
lnq Pi� − �lnq �	

1 + �1 − q��lnq �	
, �6�

where �lnq �	 represents the average of lnq � over all points
and samples accessible.

In practical terms, the algorithm is implemented the fol-
lowing way. For a fixed order of the vicinity, the distance
� /2 from each point xi of the data set under study to its nth
nearest neighbor is determined. The values of � are then used
to compute the average of lnq � that is used in the previous

equation. The value of lnq Pi� is predefined when the values
of q and n used in Eq. �5� are fixed.

Endowed with Eq. �6�, we can rate the quality of the
approximation by comparing its outcome with the predicted
theoretical values given by Eq. �2�. For the cases we will
present hereinafter we have

S2−q
� =

1

1 − q
−

�2���q−1�/2

�1 − q��2 − q
, �7�

for the Gaussian,

S2−q
� =

1

1 − q
−

22−q3�q−1�/2��7

2
− 2q�

��3−q�/2�1 − q���4 − 2q�
, �8�

for the Student-t with 3 degrees of freedom1 and

S2−q
� = − lnq 2, �9�

for a uniform PDF defined between −1 and 1.

III. RESULTS

In order to test the actual efficiency of Eq. �6� we gener-
ated sets �typically 103� of random variables with a number
of elements never larger than 104 on which we have applied
the algorithm for diverse values of n.2 The results depicted in
Figs. 1–3 show that for the Gaussian and the Student-t, the
Kozachenko-Leonenko approach is only a valuable estimator

1Because, under appropriate constraints, the entropy SQ is maxi-
mized by the Student-t PDF, the latter has been also named
Q-Gaussian distribution wherein the relation Q= 3+m

1+m between the
entropic index, Q, and the degree of freedom m is valid �7�.

2The random variables were bore by means of the extended cel-
lular automata random number generator using the five-neighbor
rule �16�. Additionally for the case of the Student-t we used the
Bailey algorithm �17�.

FIG. 1. �Color online� Ratio SQ /SQ
� vs the dual entropic param-

eter q=2−Q for fixed n=1. The inset depicts the same ratio vs N
for particular values of q. In this case the sets are composed of
Gaussian distributed random variables.

(b)

(a)

FIG. 2. �Color online� Upper panel: ratio SQ /SQ
� vs the dual

entropic parameter q=2−Q for fixed n=1. Lower panel: the same
but for different n and fixed N=5000. In this case the sets are
composed of Student-t �with 3 degrees of freedom� distributed ran-
dom variables.
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for values of q=1, i.e., for the BG case, whereas for the
uniform PDF it is quite effective.

For the Gaussian �see Fig. 1�, we have verified that for
N�5000 we have got error greater than 10% unless we are
analyzing the q=Q=1 value. In this case, the error is already
less than 1% for N=100. For the remaining q�1 cases, we
have not captured a monotonous behavior of the error and
the ratio SQ /SQ

� with the number of elements of the set or the
order of the neighbor used. In respect of the dependence of
SQ /SQ

� on n �for fixed N�, we have verified alike behavior
with n=1 which presents the best estimations for any fixed N
tested.

Regarding the Student-t case, we have noticed the same
qualitative results; i.e., the KLA algorithm tends to overesti-
mate �underestimate� the entropy SQ

� for Q	1 �Q�1� inde-
pendently of the size of the series and the order of the nearest
neighbor taken into reference.3 Once again, for the case Q
=1 the algorithm caters for an excellent approach even for
relatively small sets �N�1000� as exhibited in Fig. 2.

As shown in Fig. 3, the ineffectiveness we have reported
so far is only challenged when the uniform PDF is consid-
ered. In this case, for values of n	1, we have verified that
the KLA is a trustworthy estimator of the theoretical entropy
of a system. For instance, by considering sets of 100 vari-
ables we have achieved discrepancies never greater than 2%.
Comparing the KLA results with entropy evaluations ob-
tained by a simple binning of the sets we verify the algorithm

is only slightly better than the latter approach. Taking into
account the computation time we would say that the KLA
does not pay off.

Complementary, we now study the effectuation of the
KLA to time series generated in two different ways �18�.
First, we consider the stochastic differential equation
dx=−
xdt+���P�x���dWt �Itô notation� �19� whose station-
ary PDF is the q-Gaussian. Additionally, the process can re-
produce at the first level the intraday dynamics of the price
fluctuations of some financial markets. We have used

=100−1, �=
�2 /�, and �=−1 /2 which yields the m=3
Student-t ��q=1.5�-Gaussian� as the stationary PDF. This
case is marked by the existence of linear correlations be-
tween the variables which affect the quality of the estimation
as plotted in Fig. 4. Despite the fact that the best estimative
is still for values of q close to 1, the KLA is not so accurate
as in the independent case. Nevertheless, we can surmount
this situation taking into consideration that a shuffling
procedure does not alter the stationary PDF of stationary
process.

The second case corresponds to time series generated
by a heteroskedastic process enclosed within the fractional
autoregressive conditional heteroskedasticity class in which
discrete stochastic variables xt=t�t ��t follows a Gaussian�
are generated with t

2=a+b�i=t0
t−1 K�i− t+1�xi

2, where K�t��
�exp��t�� �t��0, T	0� �20� and exp��¯ � is the inverse
function of ln��¯ �. In spite of generating uncorrelated vari-
ables, this model exhibits long-lasting correlations in the
variance �nonlinear dependence for x� and its probabilistic
analysis provides strong statistical evidence that the station-
ary PDF is a Student-t. Using �=1.375, b=0.9375, and a
=1−b we have obtained a �q=1.54�-Gaussian. Employing
the KLA algorithm, we have obtained equivalent results to
the previous linearly correlated case �see Fig. 5�. We must be
careful and mind the fact that the resulting PDF is not exact
though. It should be noted that the error in the entropy esti-
mation is greater than the error presented in the adjustment
by a q-Gaussian.

IV. REMARKS

In this Brief Report we have introduced a generalization
of the well-known binless Lozachenko-Leonenko entropy es-
timator to appraise the �Tsallis� nonadditive entropy in sys-

3Although only n=1 is shown herein, we let n run up to the
remote value of n=100.

(b)

(a)

FIG. 3. �Color online� Upper panel: estimated SQ vs the dual
entropic parameter q=2−Q �the inset represents the ratio SQ /SQ

� vs
q�. Lower panel: ratio SQ /SQ

� vs q for different n and N=5000. In
this case the sets are composed of uniformly distributed random
variables between −1 and 1 with the number of samples taken into
account referred in the text.

FIG. 4. �Color online� Ratio SQ /SQ
� vs the dual entropic param-

eter q=2−Q for fixed N=10 000. In this case the sets are composed
of stochastic Feller-like process as described in the text.
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tems with a small number of observations for which binning
strategies are likely to present strong deviation from the ex-
pected theoretical result. By comparing numerical results
with theoretical values we have verified that the KLA ap-
proach is not effective. Although we do not have any irrefut-
able reasoning which explains the results reported herein
above, we believe that they are a demonstration of the bias
introduced by the Q entropic index in the weight the prob-
ability p�x� in Eq. �1� �21�. Explicitly, for values
of Q	1 �q�1� we have �p�x��Q	 p�x� if p�x�	1 and

�p�x��Q� p�x� otherwise. On the other hand, if Q�1
�q	1� we have �p�x��Q� p�x� if p�x�	1 and
�p�x��Q	 p�x� if p�x��1. Apparently, this bias is overesti-
mated for q�1 and underestimated for q	1 by the evalua-
tion of the �lnq �	. In the case of uniform PDF, the bias is
shed and the KLA yields a remarkable result. For q=1, the
accuracy of the algorithm only diminishes when dependent
time series are analyzed.

Regarding the Renyi entropic form we have mentioned,
SR= 
ln ��p�x���dx� / �1−�� ���0�, a similar approach can
be implemented, albeit a description involving averages
similar to Eqs. �2� and �3� is nontrivial. Nonetheless, allow-
ing for the fact that at the first order SR=SQ ��=Q�, further
work should deem whether the remaining terms in the ex-
pansion of SR either set off the error presented by the first
approximation �leading to the effectiveness of the KLA� or
sum up to it. Overall, bearing in mind its importance for a
reliable study of many complex phenomena, it is expected
that new binless or binning strategies �10� for the evaluation
of entropic functionals such as SQ will correct the shortcom-
ing conveyed here by the KLA approach.
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